UNIT OF STUDY

<table>
<thead>
<tr>
<th>Title: The Natural World</th>
<th>Subject/Course: Environmental Science</th>
<th>Length: 5 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic: Ecosystems</td>
<td>Grade: 11-12</td>
<td>Designer: D Wright</td>
</tr>
</tbody>
</table>

UNIT GOALS AND EXPECTATIONS

IMPORTANT CONCEPTS/UNDERSTANDINGS:
1. Humans are dependent on the natural world for survival. Basic needs such as clean air and water are obtained from the natural world. All resources and energy are obtained from the natural world.
2. Natural ecosystems are sustainable systems. We can learn a great deal about how to create a sustainable society by learning about how ecosystems are organized and function.
3. Limiting factors determine what can live where and climate is the major abiotic cause of differences between ecosystems.
4. The amazing species diversity among and within natural ecosystems can lead to a greater appreciation of the beauty of our planet.
5. The composition of molecules is important for understanding the biological and physical systems around us.
6. The First and Second Laws of Thermodynamics explain how energy flows.
7. The theory of evolution is fundamental to biology. Both natural selection and selective breeding work from existing alleles. New alleles are produced by random mutations.

ESSENTIAL QUESTIONS:
- What is the source of our basic needs for survival?
- How are the basic needs for human survival supplied by the natural world?
- How do natural ecosystems work to be sustainable?
- What are limiting factors in terms of human survival?
- How does climate, an abiotic factor, cause differences between ecosystems?
- What is the composition of molecules that forms life on earth?
- How does energy flow in an ecosystem?
- What are the first and second laws of thermodynamics?
- What are the biochemical cycles that move matter through an ecosystem?
- How do the fundamental mechanisms of population growth explain the differences in population size in different species in the same ecosystem?
- How do biologists explain the theory of evolution?
- What are alleles?
- What is meant by species diversity?
- What is the role of succession in species diversity?
- What is the main explanation for species extinction?

STUDENT LEARNING EXPECTATIONS:

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD.1.ES.19</td>
<td>Describe the cycling of materials and energy.</td>
</tr>
<tr>
<td>BD.2.ES.9</td>
<td>Explain how limiting factors affect populations and ecosystems.</td>
</tr>
<tr>
<td>BD.2.ES.10</td>
<td>Describe the natural selection process in populations.</td>
</tr>
<tr>
<td>BD.2.ES.1</td>
<td>Compare and contrast biomes.</td>
</tr>
<tr>
<td>SP.3.ES.2</td>
<td>Investigate the relationships between human consumption of natural resources and the stewardship responsibility for reclamation.</td>
</tr>
<tr>
<td>SP.3.ES.8</td>
<td>Compare and contrast man-made environments and natural environments.</td>
</tr>
<tr>
<td>NS.4.ES.1</td>
<td>Collect and analyze scientific data using appropriate mathematical calculations, figures and tables.</td>
</tr>
<tr>
<td>NS.4.ES.3</td>
<td>Utilize technology to communicate research findings.</td>
</tr>
<tr>
<td>PD.1.ES.17</td>
<td>Compare and contrast meteorological processes.</td>
</tr>
<tr>
<td>PD.1.ES.18</td>
<td>Construct and interpret weather maps.</td>
</tr>
</tbody>
</table>

SPECIFIC DECLARATIVE KNOWLEDGE – What I know
- Identify the criteria used to identify or classify ecosystems.
- Describe the structure of ecosystems in trophic levels, trophic categories and trophic relationships.
- Identify and describe abiotic factors.
- Understand the role of climate in ecosystems.
- Name and describe the three major changes in human civilization that have affected the environment.

SPECIFIC PROCEDURAL KNOWLEDGE – What I need to do
- Make clear and unbiased observations.
- Make predictions according to a pattern.
- Identify correctly information found on graphs, tables and charts.
- Use research skills to gather information.
UNIT ASSESSMENTS
(Include tasks related to Dimensions 3 and 4 and Bloom’s Taxonomy)

Discuss (in writing) the idea of a sustainable approach to the Earth’s environment.
Chapter Content Brainstorming

<table>
<thead>
<tr>
<th>Traditional Assessments:</th>
<th>Other Evidence of Learning:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit test.</td>
<td>Daily notebook entries.</td>
</tr>
<tr>
<td>Written quizzes.</td>
<td>TI-83 lab</td>
</tr>
<tr>
<td>Chapter outline</td>
<td>Chapter Content Brainstorming</td>
</tr>
<tr>
<td>Activity analysis</td>
<td>LHS 4-step vocabulary</td>
</tr>
</tbody>
</table>

ACTIVITIES AND LEARNING EXPERIENCES

Identify and define key words and vocabulary: (using LHS vocabulary format)
biotic community, abiotic, species, population, ecosystem, ecotone, biomes, trophic structure, photosynthesis, organic, inorganic, chemosynthesis, autotrophs, heterotrophs, detritus feeders, decomposers, herbivores, consumers, carnivores, omnivores, detritus feeders, food chain, food web, trophic levels, biomass pyramid, mutualism, ecological niche, range of tolerance, limiting factor, synergism, climate, Neolithic Revolution, Industrial Revolution, Environmental Revolution, Matter, biosphere, lithosphere, hydrosphere, atmosphere, carbon, organic, inorganic, synthetic organic compounds, kinetic energy, potential energy, calorie, the law of conservation of energy, the first law of thermodynamics, second law of thermodynamics, entropy, cell respiration, anaerobic, nitrogen fixation, denitrification, incremental value, Population equilibrium, population explosion, biotic potential, recruitment, reproductive strategies, environmental resistance, carrying capacity, dynamic balance, density dependent, population density, density independent, critical number, threatened, endangered, overgrazing, interspecific competition, intraspecific competition, territoriality, riparian, epiphytes, natural selection, ecological succession, climax ecosystem, resilience, ecosystem management

TI83 and CBL lab- “Like Moths Around A Flame”
TI83 and CBL lab- “Variety is the spice of life.”
Research of soil types and their relationship to humans through their uses.
Mineral Identification Lab
Rock Density Lab
Soil Chemical Analysis Lab
Mechanical/Chemical Weathering

Career Connections

- **Politician**
- **Economist**
- **Sociologist**
- **Ecologist**
- **Environmentalist**

Resources

Environmental Science: Toward A Sustainable Future
Media Center
Internet
Smartboard
Power point
Newspaper/Magazines
Lab exercises
TI-83 calculator w/ probes